Invited Symposium: Intracellular Traffic of Organelles
Abstract
Introduction
Materials & Methods
Results
Discussion & Conclusion
References
Discussion Board
|
Characterization of Drosophila SNAREs, alpha-SNAP and NSFs
Contact Person: Mahmood Mohtashami (moody@zoo.utoronto.ca)
References
- Rothman, J.E. (1994). Mechanism of intracellular protein transport. Nature. 372, 55-63.
- Bennett, M. and Scheller, R. (1993). The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sci U S A 90, 2559-63.
- Whiteheart, S., Rossnagel, K., Buhrow, S., Brunner, M., Jaenicke, R., and Rothman, J. (1994). N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J Cell Biol 126, 945-54.
- Clary, D., Griff, I., and Rothman, J. (1990). SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61, 709-21.
- Sollner T., Whiteheart S.W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., and Rothman J.E. (1993) Nature, Vol. 362, 318-324.
- Rothman,J.E., and Warren, G. (1994). Implications of SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4(3), 220-233.
- Banerjee, A., Barry, V.A., DasGupta, B.R., and Martin, T.F.J. (1996). N-ethylmaleimide-sensitive factor acts as a prefusion ATP-dependent step in Ca-activated exocytosis. J. Biol. Chem. 271, 20223-20226.
- Bennett, M. (1995). SNAREs and the specificity of transport vesicle targeting. Curr Opin Cell Biol 7, 581-6.
- Calakos, N., Bennett, M., Peterson, K., and Scheller, R. (1994). Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146-9.
- Hay, J.C., and Scheller R.H. (1997) SNAREs and NSF in targeted membrane fusion. Curr. Opin. Cell Biol. 9, 505-12.
- Advani, R., Bae, H., Bock, J., Chao, D., Doung, Y., Prekeris, R., Yoo, J., and Scheller, R. (1998). Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J Biol Chem 273, 10317-24.
- Bock, J.B., and Scheller R.H. (1997) Protein transport. A fusion of new ideas. Nature. 387, 133-5.
- Trimble, W., Cowan, D., and Scheller, R. (1988). VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A 85, 4538-42.
- Bennett, M., Calakos, N., and Scheller, R. (1992). Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255-9.
- Oyler, G., Polli, J., Higgins, G., Wilson, M., and Billingsley, M. (1992). Distribution and expression of SNAP-25 immunoreactivity in rat brain, rat PC-12 cells and human SMS-KCNR neuroblastoma cells. Brain Res Dev Brain Res 65, 133-46.
- Wilson, D., Whiteheart, S., Wiedmann, M., Brunner, M., and Rothman, J. (1992). A multisubunit particle implicated in membrane fusion. J Cell Biol 117, 531-8.
- Pellegrini, L., O’Connor, V., and Betz, H. (1995)Fusion complex formation protects synaptobrevin against proteolysis by tetanus toxin light chain. FEBS Lett. 353(3), 319-23.
- Pellegrini, L., OqConnor, V., Lottspeich, F., and Betz, H. (1995). Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion. EMBO J 14, 4705-13.
- Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T., and Niemann, H. (1995). Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J 14, 2317-25.
- Otto, H., Hanson, P., and Jahn, R. (1997). Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc Natl Acad Sci U S A 94, 6197-201.
- Blasi, J., Chapman, E., Link, E., Binz, T., Yamasaki, S., De Camilli, P., Sudhof, T., Niemann, H., and Jahn, R. (1993). Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 [see comments]. Nature 365, 160-3.
- Schiavo, G., Rossetto, O., Catsicas, S., Polverino de Laureto, P., DasGupta, B., Benfenati, F., and Montecucco, C. (1993). Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 268, 23784-7.
- Schiavo, G., Malizio, C., Trimble, W., Polverino de Laureto, P., Milan, G., Sugiyama, H., Johnson, E., and Montecucco, C. (1994). Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem 269, 20213-6.
- Fasshauer, D., Otto, H., Eliason, W., Jahn, R., and Brunger, A. (1997). Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol Chem 272, 28036-41.
- Hanson, P., Otto, H., Barton, N., and Jahn, R. (1995). The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin. J Biol Chem 270, 16955-61.
- Hanson, P., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523-35.
- Novick P., Ferro,S., and Schekman, R.(1981). Order of events in yeast secretory pathway. Cell. 25, 461-9.
- Griff I., Schekman R., Rothman J., and Kaiser C. (1992) The yeast Sec 17 gene product is functionally equivalent to mammalian a-SNAP Protein. J Biol Chem Vol. 267, 12106-12115.
- Wilson, D., Wilcox, C., Flynn, G., Chen, E., Kuang, W., Henzel, W., Block, M., Ullrich, A., and Rothman, J. (1989). A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355-9.
- Mayer, A., Wickner, W., and Haas, A.(1996). Sec18p (NSF)-driven release of Sec17p (SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83-94.
- Ungermann, C., Nichols, B., Pelham, H., and Wickner, W. (1998). A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J Cell Biol 140, 61-9.
- Lupashin V., and Waters G. (1997). t-SNARE activation through transient interaction with a Rab-like guanosine triphosphatase. Science, Vol. 276, 1255-1258.
- Sudhof, T., Baumert, M., Perin, M., and Jahn, R. (1989). A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron 2, 1475-81.
- Risinger, C., Blomqvist, A., Lundell, I., Lambertsson, A., Nassel, D., Pieribone, V., Brodin, L., and Larhammar, D. (1993). Evolutionary conservation of synaptosome-associated protein 25 kDa (SNAP-25) shown by Drosophila and Torpedo cDNA clones. J Biol Chem 268, 24408-14.
- Schulz K., Broadie, K., Perin, M. , and Bellen, H. (1995) Genetic and electrophysiological studies of Drosophila Syntaxin-1A demonstrates its role in nonneuronal secretion and neurotransmission. Cell, Vol. 80, 311-320.
- Sweeney, S., Broadie, K., Keane, J., Niemann, H., and O’Kane, C. (1995). Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341-51.
- Littleton T., Chapman E., Kreber R., Garment R., Carlson S., and Ganetzky B. (1998) Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex for assembly and disassembly. Neuron, Vol.21, 401-413.
- Pallanck L., Ordway R., and Ganetzky B. (1995) A drosophila NSF mutant. [Scientific Correspondence] Nature, Vol. 376, 25.
- Boulianne, G., and Trimble, W. (1995). Identification of a second homolog of N-ethylmaleimide-sensitive fusion protein that is expressed in the nervous system and secretory tissues of Drosophila. Proc Natl Acad Sci U S A 92, 7095-9.
- Honer, W., Kaufmann, C., and Davies, P. (1992). Characterization of a synaptic antigen of interest in neuropsychiatric illness. Biol Psychiatry 31, 147-58.
- Ordway R., Pallanck L., and Ganetzky B. (1994) Neurally expresssed Drosophila genes encoding homologs of the NSF and SNAP secretory proteins. Proc. Natl. Sci. USA, Vol. 91, 5715-5719.
- Broadie, K., Prokop A., Bellen, H., O’Kane, C., Schulze, K. and Sweeney, S. (1995) Syntaxin and synaptobrevein function downstream of vesicle docking in Drosophila. Neuron, Vol. 15, 663-673.
- Barnard, R., Morgan, A., and Burgoyne, R. (1997). Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis. J Cell Biol 139, 875-83.
- Galli T., McPherson P.S., DeCamili, P.(1996) the Vo sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton-X100-resistant, freeze-sensitive complex. J. Biol. Chem. 271, 2193-8.
- Nagiec E., Bernstein A., and Whiteheart S. (1995). Each domain of the N-ethylmaleimide-sensitive fusion protein contributes to its transport activity. J Biol Chem, Vol. 270, 29182-29188.
- Osten P., Sirvastava, S., Inman, G.J., Villim, S.F., Khatri, L., Lee, L.M., States, B.A., Einheber, S., Milner, T.A., Hanson, P.I., and Ziff E.B. (1998) The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta- SNAPs. Neuron. 21, 99-110.
Back to the top.
| Discussion Board | Next Page | Your Symposium |
|