Invited Symposium: Angiotensin Receptors
Abstract
Introduction
Materials & Methods
Results
Discussion & Conclusion
References
Discussion Board
|
Molecular Modeling and Mutagenesis Studies of Angiotensin II/AT1 Interaction and Signal Transduction
Contact Person: Antonio C M Paiva (acmpaiva@biofis.epm.br)
References
- Horn, F., Weare, J., Beukers, M.W., Horsch, S., Bairoch, A., Chen, W., Edvardsen, O., Campagne, F., Vriend, G. (1998). GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 26, 275-279.
- Ji, T.H., Grossmann, M., Ji, I. G protein-coupled receptors. I. Diversity
of receptor-ligand interactions (1998). J. Biol. Chem. 273, 17299-17302.
Berthold, M., Bartfai, T. Modes of peptide binding in G protein-coupled
receptors (1997). Neurochem. Res. 22, 1023-1031.
- Hjorth, S.A., Schambye, H.T., Greenlee, W.J., Schwartz, T.W. (1994). Identification of peptide binding residues in the extracellular domains of the AT1 receptor. J. Biol. Chem. 269, 30953-30959.
- Yamano, Y., Ohyama, K., Kikyo, M., Sano, T., Nakagomi, Y., Inoue, Y., Nakamura, N., Morishima, I., Guo, D.F., Hamakubo, T., Inagami, T. (1995). Mutagenesis and the molecular modeling of the rat angiotensin II receptor (AT1). J. Biol. Chem. 270, 14024-14030.
- Noda, K., Saad, Y., Kinoshita, A., Boyle, T.P., Graham, R.M., Husain, A., Karnik, S.S. (1995).Tetrazole and carboxylate groups of angiotensin receptor antagonists bind to the same subsite by different mechanisms. J. Biol. Chem. 270, 2284-2289.
- Feng, Y.H., Noda, K., Saad, Y., Liu, X.P., Husain, A., Karnik, S.S. (1995). The docking of Arg2 of angiotensin II with Asp281 of AT1 receptor is essential for full agonism. J. Biol. Chem. 270, 12846-12850.
- Gaborik, Z., Mihalik, B., Jayadev, S., Jagadeesh, G., Catt, K.J., Hunyady, L. (1998). Requirement of membrane-proximal amino acids in the carboxyl-terminal tail for expression of the rat AT1angiotensin receptor. FEBS Lett. 428, 147-151.
- Conchon, S., Barrault, M.B., Miserey, S., Corvol, P., Clauser, E. (1997).The C-terminal third intracellular loop of the rat AT1Aangiotensin receptor plays a key role in G protein coupling specificity and transduction of the mitogenic signal. J. Biol. Chem. 272, 25566-25572.
- Sano, T., Ohyama, K., Yamano, Y., Nakagomi, Y., Nakazawa, S., Kikyo, M., Shirai, H., Blank, J.S., Exton, J.H., Inagami, T. (1997). A domain for G protein coupling in the carboxyl-terminal tail of rat angiotensin II receptor type 1A. J. Biol. Chem. 272, 23631-23636.
- Shibata, T., Suzuki, C., Ohnishi, J., Murakami, K., Miyazaki, H. (1996). Identification of regions in the human angiotensin II receptor type 1 responsible for Gi and Gq coupling by mutagenesis study. Biochem. Biophys. Res. Commun. 218, 383-389.
- Laporte, S.A., Servant, G., Richard, D.E., Escher, E., Guillemette, G., Leduc, R. (1996). The tyrosine within the NPXnY motif of the human angiotensin II type 1 receptor is involved in mediating signal transduction but is not essential for internalization.
Mol. Pharmacol. 49, 89-95.
- Balmforth, A.J., Lee, A.J., Bajaj, B.P., Dickinson, C.J., Warburton, P., Ball, S.G. (1995). Functional domains of the C-terminus of the rat angiotensin AT1A receptor. Eur. J. Pharmacol. 291, 135-141.
- Thomas, W.G., Baker, K.M., Motel, T.J., Thekkumkara, T.J. (1995). Angiotensin II receptor endocytosis involves two distinct regions of the cytoplasmic tail. A role for residues on the hydrophobic face of a putative amphipatic helix. J. Biol. Chem. 270, 22153-22159.
- Han, H.M., Shimuta, S.I., Kanashiro, C.A., Oliveira, L., Han, S.W., Paiva, A.C.M. (1998). Residues Val254, His256, and Phe259 of the angiotensin II receptor are not involved in ligand binding but participate in signal transduction. Mol. Endocrinol. 12,
810-814.
- Noda, K., Saad, Y., Karnik, S.S. (1995). Interaction of Phe8 of angiotensin II with Lys199 and His256 of AT1 receptor in agonist activation. J. Biol. Chem. 270, 28511-28514.
- Oliveira,L., Paiva, A.C.M., Sander, C., Vriend, G. (1994). A common site for signal transduction in G protein-coupled receptors. Trends Pharmacol. Sci. 15, 170-172.
- Acharya, S., Karnik. S.S. (1996). Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin. J. Biol. Chem. 271, 25406-25411.
- Lu, Z.L., Curtis, C.A., Jones, P.G., Pavia, J., Hulme, E.C. (1997). The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling. Mol. Pharmacol. 51, 234-241.
- Scheer, A., Fanelli, F., Costa, T., De Benedetti, P.G., Cotecchia, S. (1996). Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J. 15, 3566-3578.
- Cotecchia, S., Scheer, A., Diviani, D., Fanelli, F., De Benedetti, P.G.(1998). Molecular mechanisms involved in the activation and regulation of the alpha 1-adrenergic receptor subtypes. Farmaco 53, 273-277.
- Shi, W., Sports, C.D., Raman, D., Shirakawa, S., Osawa, S., Weiss, E.R. (1998). Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal. Biochemistry 37, 4869-4874.
- Oliveira L, Paiva ACM, Vriend G (1993). A common step for signal transduction in G protein-coupled receptors. J. Comp.-Aided Mol. Des. 7:649-658.
- Vriend, G. (1990). WHAT IF: a molecular modeling and drug design program. J. Mol.Graphics 195, 222-228.
- Baldwin, J.M., Schertler, G.F., Unger, V.M. (1997). An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J. Mol. Biol. 272, 144-164.
- Nikiforovich, G.V., Kao, J.L., Plucinska, K., Zhang, W.J., Marshall, G.R. (1994). Conformational analysis of two cyclic analogs of angiotensin: implications for the biologically active conformation. Biochemistry 33, 3591-3598.
- Iwai, N., Yamano, Y., Chaki, S., Konishi, F., Bardhan, S., Tibbetts, C., Sasaki, K., Hasegawa, M., Matsuda, Y. and Inagami, T. (1991). Rat angiotensin II receptor: cDNA sequence and regulation of the gene expression. Biochim. Biophys. Res. Commun. 177, 299-304.
- Ohyama, K., Yamano, Y., Sano, T., Nakagomi, Y., Hamakubo, T., Morishima, I., Inagami, T. (1995). Disulfide bridges in extracellular domains of angiotensin II receptor type IA. Regul. Pept. 57, 141-147.
- Pesquero, J.B., Pesquero, J.L., Oliveira, S.M., Roscher, A.A., Metzger, R., Ganten, D. and Bader, M. (1996). Molecular cloning and functional characterization of a mouse bradykinin B1 receptor gene. Biochem. Biophys. Res. Commun. 220, 219-225.
- Farahbakhsh, Z.T., Ridge, K.D., Khorana, H.G., Hubbell, W.L. (1995). Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Biochemistry 34, 8812-8819.
- Oliveira, L., Paiva, A.C.M., Vriend, G. A low-resolution model for the interaction of G proteins with G protein-coupled rreceptors. submitted.
- Kenakin, T. (1995). Agonist-receptor efficacy I: mechanisms of efficacy and receptor promiscuity. Trends Pharmacol. Sci. 16, 188-192.
- Noel, J.P., Hamm, H.E., Sigler, P.B. (1993). The 2.2 A crystal structure of transducin-alpha complexed with GTPgammaS. Nature (London) 366, 654-663.
- Neubig, R.R. (1994). Membrane organization in G-protein mechanisms. FASEB J.
8, 939-946.
- Oliveira, L., Paiva, A.C.M. e Vriend, G. (1995). Correlational mutation analysis of G protein alpha-chains to search for residues linked to binding. In: Peptides 95: Chemistry, Structure and Biology. Mayflower Sci. Ltd. (1995) Eds. P.T.P.Karomaya, R.S.Hodges, pp 408-409.
- Denker, B.M., Schmidt, C.J. and Neer, E. (1992). Promotion of the GTP-liganded state of the Goalpha protein by deletion of the C terminus. J. Biol. Chem. 267, 9998-10002.
- Denker, B.M., Boutin, P.M. and Neer, E. (1995). Interactions between the amino- and carboxyl-terminal regions of Galpha subunits: Analysis of mutated Galphao/Galphai2 chimeras. Biochemistry 34, 5544-5553.
- Franzoni, L., Nicastro, G., Pertinhez, T.A., Tato, M., Nakaie, C.R., Paiva, A.C.M., Schreier, S., Spisni, A. (1997). Structure of the C-terminal fragment 300-320 of the rat angiotensin II AT1A receptor and its relevance with respect to G-protein coupling. J. Biol. Chem. 1997 272, 9734-9741.
- Arnis, K., Sakmar, T.P.(1993). Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Biochemistry 32, 7229-7236.
- Arnis, S., Fahmy, K., Hofmann, K.P., Sakmar, T.P. (1994). A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J. Biol. Chem. 269, 23879-23881.
- Sprang, S.R. (1997). G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639,678.
Kisselev, O.G., Kao, J., Ponder, J.W., Fann, Y.C., Gautam, N., Marshall, G.R. (1998). Light-activated rhodopsin induces structural binding motif in G protein alpha subunit.
Proc, Natl, Acad, Sci, U S A 95, 4270-4275.
- Palczewski, K. (1997). GTP-binding-protein-coupled receptor kinases - two mechanistic models. Eur. J. Biochem. 248 ,261-269.
- Wells, T.N.C., Proudfoot, A.E.I., Power, C.A., Lusti-Narasimhan, M., Alouani, S.,
Hoogewerf, A.J., Peitsch, M.C (1996). The molecular basis of the chemokine/chemokine
receptor interaction-scope for design of chemokine antagonists. Methods 10, 126-134.
- Shimuta, S.I., Kanashiro, C.A., Oshiro, M.E.M., Paiva, T.B., Paiva, A.C.M. (1990). Angiotensin II desensitization and Ca2+ and Na+ fluxes in cultured intestinal smooth muscle cells. J. Pharmacol. Exper. Therap. 253, 1215-1221.
- Javitch, J.A., Ballesteros, J.A., Weinstein, H., Chen, J. (1998). A cluster of aromatic residues in the sixth membrane-spanning segment of the dopamine D2 receptor
is accessible in the binding-site crevice. Biochemistry 37, 998-1006.
- Shieh, T., Han, M., Sakmar, T.P., Smith, S.O. (1997). The steric trigger in rhodopsin activation. J. Mol. Biol. 269, 373-384.
Back to the top.
| Discussion Board | Next Page | Your Symposium |
|